13.55 W 国产小型薄片式 Yb: YAG 1030 nm 激光器

邬幸富1,3 田玉冰1* 檀慧明1 王 帆1 崔锦江1 董宁宁1 姚文明1,2

¹中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163 ² 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033 ³长春理工大学理学院,吉林 长春 130022

摘要 报道了薄片式 Yb:YAG/1030 nm 激光器,Yb:YAG 晶体掺杂原子数分数为10%,几何尺寸 σ 11 nm×420 μ m,高反面经 Cr/Au 金属化处理后,采用铟焊工艺焊接到微通道水冷热沉上。耦合系统为四程抽运结构,球面镜规格为直径 26 nm,曲率半径 50 nm,在 32.4 W 抽运功率下,1030 nm 最高输出可达 13.55 W,光-光转换效率为41.8%。

关键词 激光器;激光二极管阵列抽运;Yb:YAG 晶体;薄片激光器 中图分类号 TN248.1 **文献标识码** A **doi**:10.3788/LOP50.061401

A Domestic Compact and Efficient 13.55 W, 1030 nm Yb:YAG Thin-Disc Laser

Wu Xingfu^{1,3} Tian Yubing¹ Tan Huiming¹ Wang Fan¹ Cui Jinjiang¹ Dong Ningning¹ Yao Wenming^{1,2}

¹ Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China

² State Key Laboratory for Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China

 13 School of Science, Changchun University of Sciences and Technology, Changchun, Jilin 130022, China 13

Abstract The laser-diode-array (LDA) pumped Yb: YAG thin-disc 1030 nm laser is demonstrated. The Yb: YAG crystal doped with 10% Yb atomic fraction is 420 μ m in thickness and 11 mm in diameter. It is mounted onto the micro-channel copper heat sink by Cr/Au/In. The four-pass optical coupling system is well designed with two spherical imaging mirrors (diameter 26 mm, radius of curvature 50 mm). With 32.4 W pump power, the maximum output power of 13.55 W at 1030 nm is obtained. The optical-optical conversion efficiency is 41.8%. **Key words** lasers; laser-diode-array pumping; Yb: YAG crystal; thin-disk laser

OCIS codes 140.3480,140.3410,140.3515

1 引 言

激光二极管阵列(LDA)抽运的 Yb:YAG/1030 nm 全固体激光器在诸多领域具有重要应用。在中红外 高分辨率光谱领域,可与 2~5 μm 光参变振荡器(OPO)一起使用;在玻色-爱因斯坦凝聚和光镊实验中,可 用来建立激光俘获和输运原子、分子;在材料微加工的印刷工业中可以对清筛辊进行精确的雕刻^[1]。因此, 该类激光器具有广阔的市场前景。

收稿日期: 2013-02-04; 收到修改稿日期: 2013-03-26; 网络出版日期: 2013-05-14

基金项目:江苏省自然科学基金面上项目(BK2010235)、苏州市应用基础研究计划(SYG201127)和苏州医工所青年引导 基金(Y052051205)资助课题。

作者简介: 邬幸富(1987—),男,硕士研究生,主要从事全固体激光器设计及非线性频率变换技术方面的研究。 E-mail: wuxingfu87@163.com

导师简介:田玉冰(1976—),男,博士,副研究员,主要从事医用全固体激光器设计及非线性频率变换技术方面的研究。 E-mail: tianyb76@yahoo.com. cn(通信联系人) 国际上对该波段的研究始于 1971 年,20 世纪 90 年代初进入快速发展阶段,目前德国在该波段的研究 仍处于领先地位,继 2000 年 Stewen 等^[2]实现单片晶体输出 647 W 连续激光后,2012 年,德国 Trumpf 公司 已推出可用于材料加工的 16 kW 商用薄片激光器^[3]。而国内起步较晚,2001 年才开始有 Yb:YAG 激光性 能的研究,天津大学、清华大学、北京理工大学、中国科学院安徽光学精密机械研究所等相继做了研究工 作^[4~11],但由于端面抽运结构热效应严重,Yb:YAG 的准三能级特性又不可避免地受到自吸收效应的影响, 因而输出功率较低。2005 年,宋秋鸣等^[7]获得了端面抽运结构的国内最高输出功率 6.09 W,但光-光转换 效率仅为 24.3%。进一步提高输出功率的最佳途径则是采用薄片结构,由于其温度梯度与输出光束方向一 致,因而可减少热透镜效应,极大地提高散热性能。2002 年,清华大学的李超等^[12]采用八程结构,利用薄片 Yb:YAG,在国内首次获得了 16 W 1030 nm 输出,光-光转换效率达到了 40.5%,但其利用四个球面镜耦合 抽运光,体积较大,光路的调整较为困难。2011 年,中国工程物理研究院的王春华等^[13]采用十六程结构,在 69.5 W 抽运功率下,获得了 27 W 输出,光-光转换效率为 38.8%,但其仿照的是德国结构,需要设计昂贵的 非球面镜和直角棱镜。

针对上述问题,本文设计了简单的四程抽运 Yb: YAG 1030 nm 激光器,在 32.4 W 抽运功率下,获得了 13.55 W 1030 nm 输出,其光-光转换效率达到了 41.8%,且光斑质量较好。

2 理论分析

薄片激光器主要是采用厚度小于 500 μm 的晶体,通过焊接工艺减小接触面的热阻来达到有效散热的 目的。由于 Cr/Au 具有较高的热导率,同时对激光晶体具有很好的附着力,而低熔点焊料 In 可降低镀膜的 难度,同时其良好的塑性形变和浸润性可有效缓解热应力,因此首先采用 Cr/Au 实施金属化,然后用 In 焊 接,效果如图 1 所示。

相对于八程和十六程结构^[12,13],四程结构要保证足够的吸收效率,需要适当增加晶体的厚度。本文计算了厚度为 340 μ m 和 420 μ m 的晶体吸收效率曲线^[14],如图 2 所示,当入射角度为 20°时,420 μ m 的晶体吸收效率可达 82.7%,相比于 340 μ m 晶体提高了 6.8%,同时也减少了抽运光沿原路返回损伤 LDA 的几率,因此采用 420 μ m 晶体。

图 1 420 µm Yb: YAG 晶体焊接图 Fig. 1 Photograph of 420-µm-thick Yb: YAG crystal soldered on the top of Cu heat sink

图2 340 µm 和 420 µm Yb: YAG 晶体吸收效率曲线图 Fig. 2 Absorption curves of 340-µm and 420-µm-thick Yb: YAG crystal

3 实验研究及结果

根据以上结果,搭建了如图 3 所示的实验装置,整个系统由半导体激光抽运源、紫铜微通道热沉、国产Yb:YAG 晶体、球面反射镜和平凹输出镜组成。抽运源采用德国 DILAS M1F2S22-940 型半导体激光器,数值孔径 0.22,为了增加抽运功率密度,抽运光选用直径为 200 μ m 的光纤耦合输出。热沉采用德国 Electrovaccuramik 公司经金属化处理的微通道冷却器。薄片状 Yb:YAG 晶体规格为 Φ 11 mm×0.42 mm,掺杂原子数分数为 10%,晶体左端面镀对 940 nm 和 1030 nm 波长的高反(HR)膜(反射率 1030 nm R= 99.92%,940 nm R=99.93%),右端面镀对 940 nm 和 1030 nm 波长的增透(AR)膜(透射率 1030 nm T=

99.96,940 nm T=99.6%)。左端面膜层先采用 Cr/Au 实施金属化,然后通过软焊料钢将其焊接到水冷热 沉上,这样可提高激光介质与冷却器之间的热传导率,实现有效散热^[15]。水冷系统采用 LX-300 型水冷机, 水温可实现 5 °C ~ 35 °C 连续可调。从光纤头出射的抽运光先被球面镜 1 反射,进入晶体后,被晶体高反面 再次反射,经两次吸收后,未被吸收的抽运光被球面镜 2 反射并再次注入晶体,这样完成了四次抽运,大约 82.7%的抽运光被晶体吸收。由于采用 200 μ m 耦合光纤,耦合镜的尺寸可适当减小^[14],实验时均采用直径 26 mm,曲率半径 50 mm 的球面镜,凹面镀对 940 nm 反射率大于 99.5%的高反膜。输出镜选用曲率半径 100 mm 的平凹镜,与 Yb:YAG 晶体的左端面构成平凹谐振腔,腔长 5.5 cm,凹面镀制 1030 nm 波长高反膜 (1030 nm T=95%),平面镀对 1030 nm 波长增透的介质膜。

图 4 为用 OPHIR Laser Star 功率计测量的 1030 nm 输出功率曲线,图中插图为采用 Ocean Optics MayaPro2000型光纤光谱仪测量的光谱,中心波长为 1030 nm。由图 4 可以看出,当循环水温度为 10 ℃,入射 功率为 32.4 W时,可获得 1030 nm 最大输出功率 13.55 W,光-光转化效率达 41.8%,且未出现饱和现象。

图 3 Yb: YAG 1030 nm 薄片激光器示意图 Fig. 3 Schematic of thin-disc Yb: YAG 1030 nm laser

图 4 1030 nm 输出功率曲线。插图为输出光谱 Fig. 4 Curves of 1030 nm output power. Inset shows the output spectrum

图 5 为注入功率 32 W 时,采用型号为 Pyrocam Ⅲ的光束轮廓仪测量的光束轮廓,图 5(a)和图(b)分别 为激光光斑的二维(2D)和三维(3D)光强分布,可以看出激光光束的对称性很好,光斑质量较高。

图 5 1030 nm (a)二维和(b)三维激光光斑轮廓图 Fig. 5 (a) 2D and (b) 3D beam profiles of 1030 nm laser

4 结 论

设计了四程抽运 Yb: YAG 1030 nm 薄片激光器,抽运光采用两个球面镜进行耦合,谐振腔选用平凹腔, 通过优化晶体厚度,在 32.4 W 抽运功率下,获得了 13.55 W 1030 nm 输出,光-光转换效率达 41.8%。该装 置具有腔型简单、成本低廉、易于调节和易于产品化等特点。

参考文献

¹ Zhang Zhiwei. Thin disk Yb: YAG laser and its applications [J]. High Power Laser and Particle Beams, 2005, 17(s): $11 \sim 14$

张志伟. 薄片式 Yb: YAG 激光器及其应用[J]. 强激光与粒子束, 2005, 17(0): 11~14

- 2 C. Stewen, K. Contag, M. Larionov et al., A 1-kW CW thin disc laser[J]. IEEE J. Sel. Top. Quant. Electron., 2000, 6(4): 650~657
- 3 Adolf Giesen, Jochen Speiser. Fifteen years of work on thin-disk lasers: results and scaling laws[J]. IEEE J. Sel. Top. Quant. Electron., 2007, 13(3): 598~609
- 4 Zhang Lizhe, Dai Jianmin, Zhang Weili *et al*. All-solid-state tunable Yb: YAG laser[J]. *Chinese J. Lasers*, 2001, **28**(10): 873~876
- 张丽哲,戴建明,张伟力等.全固化可调谐Yb:YAG激光器[J].中国激光,2001,28(10):873~876
- 5 Wu Haisheng, Yan Ping, Gong Mali *et al.*. $M^2 \leq 1.14$ diode-pumped Yb: YAG microchip laser[J]. *Chinese J. Lasers*, 2002, **29**(11): 961~964
- 吴海生, 闫 平, 巩马理等. M²≤1.14 的 LD 抽运的 Yb: YAG 微晶片激光器[J]. 中国激光, 2002, 29(11): 961~964
- 6 Li Lei, Yang Suhui, Sun Wenfeng *et al.*. LD-pumped Yb: YAG chip laser with high beam quality[J]. *Chinese J. Lasers*, 2004, **31**(11): 1285~1288
- 李 磊,杨苏辉,孙文峰等.激光二极管抽运的高光束质量的 Yb:YAG 薄片激光器[J].中国激光,2004,**31**(11): 1285~1288
- 7 Song Qiuming, Chen Changshui, Yin Shaotang et al.. LD pumped Yb: YAG laser[J]. Chinese J. Quant. Electronics, 2005, 22(4): 525~527
- 宋秋鸣,陈长水,殷绍唐等.激光二极管泵浦 Yb:YAG 激光器[J]. 量子电子学报,2005,22(4):525~527
- 8 Wu Wuming, Wu Huiyun, Xu Xiaojun *et al.*. Cryogenically cooled high average power Yb: YAG laser[J]. Laser & Optoelectronics Progress, 2010, **47**(7): 071403
- 吴武明,吴慧云,许晓军等. 低温冷却高平均功率 Yb: YAG 激光器[J]. 激光与光电子学进展, 2010, 47(7): 071403
- 9 Wang Jianlei, Shi Xiangchun, Zhu Xiaolei. Optimization design and modeling of high peak power Yb: YAG pulsed lasers with high efficiency[J]. *Acta Optica Sinica*, 2010, **30**(8): 2278~2283 王建磊, 施翔春, 朱小磊. 高效率高功率脉冲 Yb: YAG 片状激光器优化设计与模拟[J]. 光学学报, 2010, **30**(8):
- 工建菇, 爬翔骨, 木小菇, 向效举向功举脉冲 10·1AG 月 状激元益饥 化 设 归 马 候 拟 [J]. 元 字 字 很, 2010, **30** (8): 2278~2283
- 10 Duan Wentao, Jiang Xinying, Jiang Dongbin *et al.*. 10 Hz joule-class laser diode end-pumped V-shaped water-cooled Yb: YAG oscillator[J]. *Chinese J. Lasers*, 2010, **37**(1): 44~48 段文涛,蒋新颖,蒋东镔等. 激光二极管端面抽运的焦耳级 10 Hz"V"型水冷 Yb:YAG 激光器[J]. 中国激光, 2010, **37**(1): 44~48
- 11 Zhang Zhenhua, Cheng Xiaojin, Wang Jianlei *et al.*. Amplification characteristic of low temperature Yb: YAG crystal disc cooled by alcohol[J]. *Chinese J. Lasers*, 2011, **38**(7): 0702013 张振华,程小劲,王建磊等. 基于无水乙醇冷却的 Yb: YAG 片状晶体激光放大特性研究[J]. 中国激光, 2011, **38**(7): 0702013
- 12 Li Chao, Xu Zhen, Li Junlin et al.. Diode pumped Yb: YAG thin disk laser achieves 16 W CW output[J]. Chinese J. Quant. Electronics, 2002, 19(2): 104~108 李 超,徐 震,李俊林等. 二极管泵浦 Yb: YAG Thin Disk 激光器获得16 W 连续激光输出[J]. 量子电子学报, 2002, 19(2): 104~108
- 13 Wang Chunhua, Wang Weimin, Ma Yi *et al.*. Design and experiment of multi-pass pump system for Yb: YAG thin-disk laser[J]. *High Power Laser and Particle Beams*, 2011, **23**(5): 1229~1232 王春华,王卫民,马 毅等. Yb: YAG 薄片激光器多通泵浦耦合系统设计与实验[J]. 强激光与粒子束, 2011, **23**(5): 1229~1232
- 14 Tian Yubing, Li Yantao, Lü Qipeng. 4.81 W of Yb: YAG/1030 nm thin disc laser[J]. *High Power Laser and Particle Beams*, 2010, **22**(11): 2505~2509 田玉冰,李颜涛,卢启鹏. 4.81 W Yb: YAG/1030 nm 薄片激光器优化设计[J]. 强激光与粒子束, 2010, **22**(11):
- 田玉孙, 学颜凉, 尸后腑, 4.81 w 10·1AG/1030 nm 海方 激元 益饥化 设订[J]. 強激元 与私于来, 2010, 22(11): 2505~2509
- 15 J. K. Alan, J. V. Gareth, D. Burns. Progress towards high-power, high-brightness neodymium-based thin-disk lasers[J]. Prog. Quant. Electron., 2004, 28(6): 305~344